CHAPTER SIXTEEN

Consumption

Consumption is the sole end and purpose of all production.

— Adam Smith

How do households decide how much of their income to consume today and how much to save for the future? This is a microeconomic question because it addresses the behavior of individual decisionmakers. Yet its answer has macroeconomic consequences. As we have seen in previous chapters, households' consumption decisions affect the way the economy as a whole behaves both in the long run and in the short run.

The consumption decision is crucial for long-run analysis because of its role in economic growth. The Solow growth model of Chapters 7 and 8 shows that the saving rate is a key determinant of the steady-state capital stock and thus of the level of economic well-being. The saving rate measures how much of its income the present generation is putting aside for its own future and for future generations.

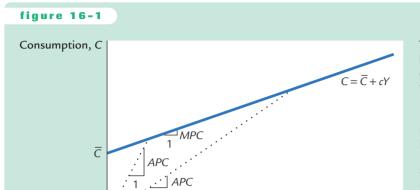
The consumption decision is crucial for short-run analysis because of its role in determining aggregate demand. Consumption is two-thirds of GDP, so fluctuations in consumption are a key element of booms and recessions. The *IS–LM* model of Chapters 10 and 11 shows that changes in consumers' spending plans can be a source of shocks to the economy, and that the marginal propensity to consume is a determinant of the fiscal-policy multipliers.

In previous chapters we explained consumption with a function that relates consumption to disposable income: C = C(Y - T). This approximation allowed us to develop simple models for long-run and short-run analysis, but it is too simple to provide a complete explanation of consumer behavior. In this chapter we examine the consumption function in greater detail and develop a more thorough explanation of what determines aggregate consumption.

Since macroeconomics began as a field of study, many economists have written about the theory of consumer behavior and suggested alternative ways of interpreting the data on consumption and income. This chapter presents the views of six prominent economists to show the diverse approaches to explaining consumption.

16-1 John Maynard Keynes and the **Consumption Function**

We begin our study of consumption with John Maynard Keynes's General Theory, which was published in 1936. Keynes made the consumption function central to his theory of economic fluctuations, and it has played a key role in macroeconomic analysis ever since. Let's consider what Keynes thought about the consumption function, and then see what puzzles arose when his ideas were confronted with the data.


Keynes's Conjectures

Today, economists who study consumption rely on sophisticated techniques of data analysis. With the help of computers, they analyze aggregate data on the behavior of the overall economy from the national income accounts and detailed data on the behavior of individual households from surveys. Because Keynes wrote in the 1930s, however, he had neither the advantage of these data nor the computers necessary to analyze such large data sets. Instead of relying on statistical analysis, Keynes made conjectures about the consumption function based on introspection and casual observation.

First and most important, Keynes conjectured that the marginal propensity to consume—the amount consumed out of an additional dollar of income—is between zero and one. He wrote that the "fundamental psychological law, upon which we are entitled to depend with great confidence, . . . is that men are disposed, as a rule and on the average, to increase their consumption as their income increases, but not by as much as the increase in their income." That is, when a person earns an extra dollar, he typically spends some of it and saves some of it. As we saw in Chapter 10 when we developed the Keynesian cross, the marginal propensity to consume was crucial to Keynes's policy recommendations for how to reduce widespread unemployment. The power of fiscal policy to influence the economy—as expressed by the fiscal-policy multipliers—arises from the feedback between income and consumption.

Second, Keynes posited that the ratio of consumption to income, called the average propensity to consume, falls as income rises. He believed that saving was a luxury, so he expected the rich to save a higher proportion of their income than the poor. Although not essential for Keynes's own analysis, the postulate that the average propensity to consume falls as income rises became a central part of early Keynesian economics.

Third, Keynes thought that income is the primary determinant of consumption and that the interest rate does not have an important role. This conjecture stood in stark contrast to the beliefs of the classical economists who preceded him. The classical economists held that a higher interest rate encourages saving and discourages consumption. Keynes admitted that the interest rate could influence consumption as a matter of theory. Yet he wrote that "the main conclusion suggested

The Keynesian Consumption **Function** This figure graphs a consumption function with the three properties that Keynes conjectured. First, the marginal propensity to consume *c* is between zero and one. Second, the average propensity to consume falls as income rises. Third, consumption is determined by current income.

Income, Y

Note: The marginal propensity to consume, MPC, is the slope of the consumption function. The average propensity to consume, APC = C/Y, equals the slope of a line drawn from the origin to a point on the consumption function.

by experience, I think, is that the short-period influence of the rate of interest on individual spending out of a given income is secondary and relatively unimportant."

On the basis of these three conjectures, the Keynesian consumption function is often written as

$$C = \overline{C} + \epsilon Y$$
, $\overline{C} > 0$, $0 < \epsilon < 1$,

where C is consumption, Y is disposable income, \overline{C} is a constant, and c is the marginal propensity to consume. This consumption function, shown in Figure 16-1, is graphed as a straight line.

Notice that this consumption function exhibits the three properties that Keynes posited. It satisfies Keynes's first property because the marginal propensity to consume c is between zero and one, so that higher income leads to higher consumption and also to higher saving. This consumption function satisfies Keynes's second property because the average propensity to consume APC is

$$APC = C/Y = \overline{C}/Y + c$$
.

As Y rises, \overline{C}/Y falls, and so the average propensity to consume C/Y falls. And finally, this consumption function satisfies Keynes's third property because the interest rate is not included in this equation as a determinant of consumption.

The Early Empirical Successes

Soon after Keynes proposed the consumption function, economists began collecting and examining data to test his conjectures. The earliest studies indicated that the Keynesian consumption function is a good approximation of how consumers behave.

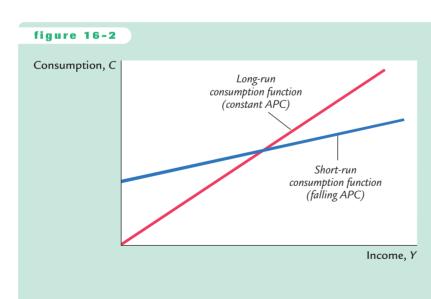
In some of these studies, researchers surveyed households and collected data on consumption and income. They found that households with higher income consumed more, which confirms that the marginal propensity to consume is greater than zero. They also found that households with higher income saved more, which confirms that the marginal propensity to consume is less than one. In addition, these researchers found that higher-income households saved a larger fraction of their income, which confirms that the average propensity to consume falls as income rises. Thus, these data verified Keynes's conjectures about the marginal and average propensities to consume.

In other studies, researchers examined aggregate data on consumption and income for the period between the two world wars. These data also supported the Keynesian consumption function. In years when income was unusually low, such as during the depths of the Great Depression, both consumption and saving were low, indicating that the marginal propensity to consume is between zero and one. In addition, during those years of low income, the ratio of consumption to income was high, confirming Keynes's second conjecture. Finally, because the correlation between income and consumption was so strong, no other variable appeared to be important for explaining consumption. Thus, the data also confirmed Keynes's third conjecture that income is the primary determinant of how much people choose to consume.

Secular Stagnation, Simon Kuznets, and the Consumption Puzzle

Although the Keynesian consumption function met with early successes, two anomalies soon arose. Both concern Keynes's conjecture that the average propensity to consume falls as income rises.

The first anomaly became apparent after some economists made a dire—and, it turned out, erroneous-prediction during World War II. On the basis of the Keynesian consumption function, these economists reasoned that as incomes in the economy grew over time, households would consume a smaller and smaller fraction of their incomes. They feared that there might not be enough profitable investment projects to absorb all this saving. If so, the low consumption would lead to an inadequate demand for goods and services, resulting in a depression once the wartime demand from the government ceased. In other words, on the basis of the Keynesian consumption function, these economists predicted that the economy would experience what they called secular stagnation—a long depression of indefinite duration—unless fiscal policy was used to expand aggregate demand.


Fortunately for the economy, but unfortunately for the Keynesian consumption function, the end of World War II did not throw the country into another depression. Although incomes were much higher after the war than before, these higher incomes did not lead to large increases in the rate of saving. Keynes's conjecture that the average propensity to consume would fall as income rose appeared not to hold.

The second anomaly arose when economist Simon Kuznets constructed new aggregate data on consumption and income dating back to 1869. Kuznets assembled these data in the 1940s and would later receive the Nobel Prize for this work. He discovered that the ratio of consumption to income was remarkably stable from decade to decade, despite large increases in income over the period he studied. Again, Keynes's conjecture that the average propensity to consume would fall as income rose appeared not to hold.

The failure of the secular-stagnation hypothesis and the findings of Kuznets both indicated that the average propensity to consume is fairly constant over long periods of time. This fact presented a puzzle that motivated much of the subsequent work on consumption. Economists wanted to know why some studies confirmed Keynes's conjectures and others refuted them. That is, why did Keynes's conjectures hold up well in the studies of household data and in the studies of short time-series, but fail when long time-series were examined?

Figure 16-2 illustrates the puzzle. The evidence suggested that there were two consumption functions. For the household data or for the short time-series, the Keynesian consumption function appeared to work well. Yet for the long timeseries, the consumption function appeared to have a constant average propensity to consume. In Figure 16-2, these two relationships between consumption and income are called the short-run and long-run consumption functions. Economists needed to explain how these two consumption functions could be consistent with each other.

In the 1950s, Franco Modigliani and Milton Friedman each proposed explanations of these seemingly contradictory findings. Both economists later won

The Consumption Puzzle Studies of household data and short time-series found a relationship between consumption and income similar to the one Keynes conjectured. In the figure, this relationship is called the short-run consumption function. But studies of long time-series found that the average propensity to consume did not vary systematically with income. This relationship is called the long-run consumption function. Notice that the short-run consumption function has a falling average propensity to consume, whereas the longrun consumption function has a constant average propensity to consume.

Nobel Prizes, in part because of their work on consumption. But before we see how Modigliani and Friedman tried to solve the consumption puzzle, we must discuss Irving Fisher's contribution to consumption theory. Both Modigliani's life-cycle hypothesis and Friedman's permanent-income hypothesis rely on the theory of consumer behavior proposed much earlier by Irving Fisher.

16-2 Irving Fisher and Intertemporal Choice

The consumption function introduced by Keynes relates current consumption to current income. This relationship, however, is incomplete at best. When people decide how much to consume and how much to save, they consider both the present and the future. The more consumption they enjoy today, the less they will be able to enjoy tomorrow. In making this tradeoff, households must look ahead to the income they expect to receive in the future and to the consumption of goods and services they hope to be able to afford.

The economist Irving Fisher developed the model with which economists analyze how rational, forward-looking consumers make intertemporal choices that is, choices involving different periods of time. Fisher's model illuminates the constraints consumers face, the preferences they have, and how these constraints and preferences together determine their choices about consumption and saving.

The Intertemporal Budget Constraint

Most people would prefer to increase the quantity or quality of the goods and services they consume—to wear nicer clothes, eat at better restaurants, or see more movies. The reason people consume less than they desire is that their consumption is constrained by their income. In other words, consumers face a limit on how much they can spend, called a budget constraint. When they are deciding how much to consume today versus how much to save for the future, they face an intertemporal budget constraint, which measures the total resources available for consumption today and in the future. Our first step in developing Fisher's model is to examine this constraint in some detail.

To keep things simple, we examine the decision facing a consumer who lives for two periods. Period one represents the consumer's youth, and period two represents the consumer's old age. The consumer earns income Y_1 and consumes C_1 in period one, and earns income Y_2 and consumes C_2 in period two. (All variables are real—that is, adjusted for inflation.) Because the consumer has the opportunity to borrow and save, consumption in any single period can be either greater or less than income in that period.

Consider how the consumer's income in the two periods constrains consumption in the two periods. In the first period, saving equals income minus consumption. That is,

$$S = Y_1 - C_1,$$